Reconfigurable Electronic Materials Inspired by Nonlinear Neuron Dynamics (ReMIND) – Department of Energy (DOE) funded Energy Frontier Research Center (EFRC)
Remind Director: R.Stanley Williams, Associate Directors: S. Banerjee and A. Ferguson. Thrust Leads / Senior Personnel: P. Shamberger – Thrust 1 Co-lead, S. Kumar, P. Balbuena, J.Guo, M. Darensbourg, A. Talin, R. Arroyave, K. Jungjohann, E. Rotenberg, M. Pharr, L. Wheeler, K. Dunbar, X. Qian, J. Blackburn
Established in 2022, REMIND seeks to flip the current computing paradigm by blending inverse and forward design and connecting dynamical material properties and underlying transformations to discover and exploit new materials, mechanisms, and interfaces that are required to emulate specific neuronal and synaptic functions of the human brain. REMIND will uncover fundamental mechanisms and molecular/material building blocks for a new paradigm of brain-inspired computing.
OUR MISSION: to establish foundational scientific knowledge underpinning the function of massively reconfigurable computing architectures that approach fundamental limits of energy efficiency and speed, enabling real-time learning and embedded intelligence emulative of specific neuronal and synaptic functions of the human brain
Thrust 1 will fuse an inverse design approach based on an analytical framework developed for Mott oxides with a forward design approach linking atomistic and electronic structure to coherent and incoherent electronic transport. Using redox transitions in molecular films of TM complexes of N-heterocyclic ligands and Li-ion insertion in βʹ-CuxV2O5 and LixCoO2 as model systems, leveraging carefully constructed existing libraries with site-selective modification, and with the help of Bayesian machine learning (ML) and multimodal operando measurements, we will connect target neuronal behavior to the necessary molecular/material properties.
Key Publications:
- T.D. Brown, A. Zhang, F. Nitta, E.D. Grant, J. Chong*, J. Zhu, S. Radhakrishnan, M. Islam, E.J. Fuller, A.A. Talin, P.J. Shamberger, E. Pop, R.S. Williams, S. Kumar, Axon-like Active Transmission, Nature, published online (2024). doi: 10.1038/s41586-024-07921-z
- R. Gurrola*, J.M. Cain, S. Oh, T.D. Brown, F. Jardalix, R.M. Schoell, D.R. Yadav, J. Dong, C. Smyth, M. Pharr, S. Kumar, K. Xie, K. Hattar, A.A. Talin, T.-M. Lu, P.J. Shamberger, Selective modulation of electronic transport in VO2 induced by 10 keV helium ion irradiation, J. Appl. Phys., 135, 125109 (2024). doi: 10.1063/5.0189562
- A. Bradicich*, T.D. Brown, R. Ganguli, R.S. Williams, P.J. Shamberger. Spontaneous symmetry breaking from nonlinear electrical transport, Adv. Electron. Mater., 2300265 (2023). doi: 10.1002/aelm.202300265
- Y. Zhang, C. Fincher, R. Gurrola*, W. Serem, D. Zhao, J. Shin, S. Banerjee, K. Xie, P.J. Shamberger, M. Pharr. Strategic Texturation of VO2 Thin Films for Tuning Mechanical, Structural, and Electronic Couplings during Metal-Insulator Transitions, Acta Materialia, 242, 118478 (2023). doi: 10.1016/j.actamat.2022.118478
- P. Schofield, A. Bradicich*, R. Gurrola*, Y. Zhang, T.D. Brown, M. Pharr, P.J. Shamberger, S. Banerjee. Harnessing the Metal—Insulator Transition of VO2 in Neuromorphic Computing, Adv. Mater., 2205294 (2022). doi: 10.1002/adma.202205294